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The jFAT Java library makes it simple to create tiles (2D shapes) and write code to have 

them cover the screen.  A few examples are shown in Figure 1, with larger versions in the 

jFAT download (http://fivedots.coe.psu.ac.th/~ad/jfat/). 
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Figure 1. Various Tilings possible with jFAT. 

 

The last four examples in the figure use jFAT's built-in tiling functions, which account for the 

"fairly accurate" part of the library's name – the tessellations involving the Escher-style 

lizards [8], the carpeted equilateral triangles, and the Penrose P2 tiles (the dart and the kite) 

[5] include gaps which should not be present. There are various reasons for these spaces: the 

first two images suffer from inaccuracies in the definition of their tiles, but the openings in 

the Penrose tessellation point to a more complex problem related to backtracking, which I'll 

discuss in section 9. 

jFAT can define tiles in four ways – using Java shapes, with textual descriptions, and as PNG 

or SVG images. During tessellation, a tile can be translated, rotated, flipped, resized, and 

recolored.  

The tiling process can be coded in several ways, the most common is based on nested loops 

that fill the space row-by-row. It‟s also possible to use recursion, tile composition, a test-

then-draw coding style, or simply rely on jFAT's built-in tiling functions. This document 

explains these various techniques through examples, all of which are included in the jFAT 

download. 

jFAT can easily handle tiles made from irregular shapes (such as Escher-style fish and 

lizards) since the library supports a mix of geometric and pixel-based operations. For 

example, shapes include "inner" and "outer" points placed inside and outside the tile which 

can be used to test if an area is occupied, or if a tile is adjacent to another one. However, this 

comes at the cost of accuracy since there may not be enough points to detect every overlap or 
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adjacent tile. I'll return to these issues several times as I describe examples using more 

complex shapes. 

jFAT offers two built-in functions for automatically tiling a space: tileLocs() and 

tileSpacey(), which rely on the presence of inner and outer points, and also point pairs which 

restrict how tiles can be matched.   

 

1. Tile Formats 

This section presents examples of the four ways of specifying a tile shape: using Java shapes, 

with a textual description, and as PNG or SVG images.  

 

1.1. Shapes 

jFAT's ShapeOps class contains shape-related functions, of which the most useful for 

defining a tile are nPolygon(), radPolygon(), and points(). nPolygon() generates a regular 

polygon of the specified number of sides, each with the given length, as in the following code 

snippet: 

 
// from Pentagons.java 

Shape s = ShapeOps.nPolygon(Tile.WIDTH/2, Tile.HEIGHT/2, 30, 5); 

                                      // center pt., length, no. sides 

s = ShapeOps.rotate(s, 90);   // rotate first point to top 

Tile t = new Tile(s, "pentagon"); 

t.view(); 

t.reportPoints(); 

 

The five coordinates are placed around the given center, with the first on the x-axis, and the 

others running counterclockwise around the center. In this example, the shape is also rotated 

90 degrees counterclockwise so that the first point is moved to the top. The default size for 

the new tile is 100 x 100 pixels. 

Tile.view() displays the tile in a window, and Tile.reportPoints() prints information about its 

coordinates, as shown in Figure 2. 

 

 

Figure 2. The Pentagons.java Tile. 
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Tile.view() displays labeled coordinates for the shape (P0 to P4; the  "P" comes from the tile's 

"pentagon" ID), and automatically generated inner and outer points (the green and blue dots).  

These points only become useful when utilizing more advanced drawing operations or the 

built-in tiling functions, tileLocs() and tileSpacey(), so will be ignored for now.  

Tile.reportPoints() prints the image coordinates for the points (i.e. (0,0) is the top-left corner). 

It also lists the interior angle between a point and its successor in counterclockwise order, and 

the distance between them. The values reported in Figure 2 confirm that the shape is a regular 

pentagon. 

The dashed line around the pentagon marks out the dimensions of the tile. The shape's 

internals are colored white and its background is transparent (shown as a light gray in the 

figure).  

Tile.view() automatically saves a copy of the displayed image to TileViewer.png, without the 

labeled coordinates or inner and outer points. This file can be useful for double-checking the 

shape, and estimating coordinate positions. The Tile.view() window can also be clicked upon 

with the mouse to display the current cursor coordinate in a popup window. 

 

ShapeOps.radPolygon() is a close relative of nPolygon(), but specifies its size in terms of a 

radius from the center: 

 

// from DrawATriangle.java 

Shape s = ShapeOps.radPolygon(Tile.WIDTH/2, Tile.HEIGHT/2, 30, 3); 

                               // center, radius, no. sides 

s = ShapeOps.rotate(s, 90);   // rotate first point to top 

Tile t = new Tile(s, "triangle"); 

t.view(); 

t.reportPoints(); 

 

Figure 3 shows the output from Tile.view() and Tile.reportPoints() in this case. 

 

 

Figure 3. The DrawATriangle.java Tile. 

 

The coordinates are labeled with "T" since the tile's ID is "triangle". 
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ShapeOps.points() creates a shape from a series of points supplied as two arrays for their x- 

and y- axis values. 

// in Carpet.java 

double[] xs = {42, 105, 169};  

double[] ys = {38, 149, 38}; 

Shape s = ShapeOps.points(xs, ys); 

Tile carpetTile = new Tile(s, "carpet");    

          // the tile points will be labeled C0, C1, ... 

     :  // more code, not relevant here 

carpetTile.view(); 

carpetTile.reportPoints(); 

The coordinate were obtained by examining "carpet.png" (Figure 4) in a graphic applications. 

 

Figure 4. carpet.png 

 

Sadly these points don't quite form an equilateral triangle, and the error gradually becomes 

evident as its tiles fill the screen (see Figure 1).   

The results of calling Tile.view() and Tile.reportPoints() are shown in Figure 5. 

 

 

Figure 5. The Carpet.java Tile. 

 

The data produced by Tile.reportPoints() highlight the inaccuracies in the shape's coordinates. 

The interior angles should all be 60 degrees, and the sides should be the same length. 
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1.2. Tile Description Text 

The easiest way to define slightly more complicated geometric shapes, such as an arrow, dart, 

or kite, is to use jFAT's tile description text, essentially just a series of degree angles and side 

lengths. As an example, Figure 6 shows the typical angles and dimensions for the Penrose 

dart and kite [10]. 

 

Figure 6. The Penrose Dart and Kite. 

 

The tile description data for these shapes is calculated by choosing a starting coordinate for a 

point (e.g. "D0" at (20,100), "K0" at (20,120)), and multiplying the dimensions by a suitable 

value (e.g. 100) to make the shape‟s sides a reasonable pixel length (see Figure 7). One 

requirement is that the starting position must be such that all the other points have positive 

coordinates. The points are now considered in counterclockwise order.  

 

Figure 7. Tile Data for the Penrose Dart and Kite. 

 

Determining the angles between the coordinates is the trickiest step since they have to be 

specified relative to the current side direction. One way of thinking about this is with turtle 

geometry – an imaginary turtle moves along the shape's edges, and an angle is measured by 

turning the turtle counterclockwise from its current direction to face along the next edge. 
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Fortunately, since the shape is closed, there's no need to calculate a turning angle for the last 

point. 

The resulting data for the dart and kite are: 

Tile 20 100 

   0 100   

 144 61.8 

 324 61.8   $ 

and 

Tile 20 120 

   0 61.8   

  36 61.8 

 108 100   $ 

The starting coordinate appears on the first line, followed by a turning angle and distance on 

each subsequent line. Since both the dart and kite have four sides, only three lines of data 

need to be calculated. 61.8 is an approximation to     ⁄ , and "$" denotes the end of the data. 

jFAT includes a small standalone program, ViewTile, which can load a tile data file and 

display the corresponding tile and coordinate information. Figure 8 shows how the tile data 

from above (stored in dartTile.txt and kiteTile.txt respectively) are displayed. 

 

 

 

Figure 8. Using ViewTile to Check the Tile Data. 
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Inner and outer points are generated for the tiles, as are point labels (which use the first letter 

of the filename). Note that the dart's concave sides has caused the Tile constructor to issue 

some warnings. I'll return to that issue when I discuss inner and outer points in section 6. 

Once the tile data is satisfactory, it can be used to initialize a tile in a program: 

 

// in DrawPenrose.java 

Tile dart = new Tile("data/dartTile.txt"); 

Tile kite = new Tile("data/kiteTile.txt"); 

 

1.3. Tiles based on PNG Images 

A tile may have such a complex shape that it's not feasible to define it using a shape or tile 

data. In that case, it can be created from a PNG image, but the programmer must ensure that 

the image background is transparent, and will also have to supply coordinates for the tile's 

points. For example, an Escher-style lizard image stored in liz.png can be examined with 

jFAT's ViewTile as in Figure 9. 

 

Figure 9. liz.png in ViewTile. 

 

The lack of coordinates and inner and outer points in ViewTile‟s window indicates that the 

user still has to supply coordinate information in their code.  

One way of getting that data is to click the mouse over the ViewTile image, as shown on the 

lizard's left arm in Figure 9. However, it's often easier to examine the image with graphics 

software where the picture can be enlarged so that the pixel selection can be more precise. 

The coordinates that define the 'corners' of a tile can be placed anywhere inside the image 

rectangle marked by the dashed line in ViewTile. In particular, this allows the complicated 

lizard tile to utilize just six points, relating to the underlying hexagon used by Escher when 

designing the lizard [1], as illustrated by Figure 10. 
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Figure 10. Lizard in a Hexagon. 

 

The six coordinates are applied to the tile by calls to Tile.addPt(): 

 
// in DrawLizards.java 

Tile lizard = new Tile("data/liz.png"); 

lizard.addPt("C0", 113, 43);  // points in ccw order 

lizard.addPt("C1", 57, 80);   

lizard.addPt("C2", 61, 147); 

lizard.addPt("C3", 126, 186);  

lizard.addPt("C4", 193, 148); 

lizard.addPt("C5", 184, 73); 

lizard.view(); 

lizard.reportPoints();  

It's good practice to specify the points in counterclockwise order. This is only a requirement 

when using the built-in tiling functions, but is a good habit to acquire. 

Once a tile has coordinates, the Tile constructor can automatically generate inner and outer 

points, as in Figure 11. 

 

Figure 11. The DrawLizards.java Tile. 
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The coordinate data printed by Tile.reportPoints() indicate a problem with the lizard tile, 

which only becomes apparent when it's used for tiling (as shown in Figure 1).The points do 

not precisely define a regular hexagon (i.e. all the sides should be the same length, with 

interior angles of 120 degrees). This inaccuracy gradually builds as the screen is tiled until 

collision detection will start to leave spaces between the lizards. 

The underlying problem is that the image doesn't quite fit into a regular hexagon. This often 

occurs when using pixel-based drawing tools which lack the precision of vector-based tools 

(such as Inkscape (https://inkscape.org/)). 

 

1.4. Tiles based on SVG Images 

The inaccuracies of pixel-based images is the main reason for jFAT also being able to load 

SVG files as created by Inkscape (and other tools).  

SVG is an extremely rich format, so jFAT restricts itself to only extracting "path" 

information from a picture which describes a shape's outline using curves and straight lines. 

The most common problem with this restriction is that SVG also supports basic shapes, such 

as rectangles and ellipses, which are not stored as paths by default. For example, the rectangle 

created by Inkscape in Figure 12 is encoded as: 

<rect 

   style="fill:#0000ff;stroke:#000000;stroke-width:0.264583" 

   id="rect10" 

   width="83.910713" 

   height="55.940475" 

   x="27.214285" 

   y="38.55357" /> 

 

 

Figure 12. An SVG Rectangle (in rect.svg) 
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The easiest way to fix this is to select the offending graphic object inside Inkscape and use 

the "Object to Path" menu item  to convert it to a path. The code becomes: 

<path 

   id="rect10" 

   style="fill:#0000ff;stroke:#000000;stroke-width:0.264583" 

   d="M 27.214285,38.55357 H 111.125 V 94.494045 H 27.214285 Z" /> 

 

However, it's not apparent by viewing an SVG image in Inkscape whether a shape is encoded 

as a path. One way of testing for this is to use jFAT's ViewTile tool to load the SVG file. 

Loading the original rect.svg file triggers an exception: 

 

After the rectangle has been translated into a path inside Inkscape, a subsequent call to 

ViewTile will succeed, as shown in Figure 13. 

 

Figure 13. A Tile Using an SVG Path. 

 

Note that any styling information (e.g. the fact that the rectangle is blue) is ignored. Also, no 

scaling is applied to shape's lengths which are treated as pixel dimensions. Figure 13 also 

shows that coordinates are generated for the tile.  

SVG is probably most useful if a shape involves curves or more complex line combinations. 

For example, axes2.svg represents an axe head, as shown in Figure 14. 
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Figure 14. A Blue Axe Head. 

 

Figure 15 shows how ViewTile interprets it as a tile. 

 

Figure 15. The Axe Tile. 

 

jFAT utilizes the PathParser class written by Nima Taheri 

(https://gist.github.com/nimatrueway/cc1668c16096e2f2184275d8f780e3a5) to convert the 

path into a Java Path2D object. Except for all but the simplest shapes, the resulting object will 

contain a very large number of line segments, leading to an excessive number of tile points.  

For instance in Figure 15, ViewTile reports that the shape has 70 points, and by default, the 

Tile constructor automatically deletes all the points if there's more than 30. The programmer 

must instead define their own points for the axe: 

 
// in Axes.java 

Tile longAxe = new Tile("data/axe2.svg"); 

  // removes all 70 points, so the programmer writes... 

 

longAxe.addPt("A0", 24, 18); 
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longAxe.addPt("A1", 24, 80); 

longAxe.addPt("A2", 84, 80);   

longAxe.addPt("A3", 84, 18); 

 

longAxe.view(); 

longAxe.reportPoints(); 

 

The calls to Tile.view() and Tile.reportPoints() are shown in Figure 16. 

 

Figure 16. Tile Creation in Axes.java 

 

Four 'corner' points for the axe are sufficient for controlling its tiling. Note that once the tile 

has coordinates, then inner and outer points are generated automatically. 

Another issue is that an SVG file may contain multiple shapes, and therefore multiple paths. 

The Tile constructor loads all the paths but combines them into a single Path2D object.  

 

1.5. Decorating a Tile 

The preceding subsections have produced tiles with a black outline and filled with a 

nondescript white. Fortunately, it's quite easy to enhance a tile's appearance, by accessing its 

image via a Graphics2D reference. The square and equilateral triangle tiles created by 

DrawShapes.java use this approach. As Figure 17 illustrates, a red dot is added to the square, 

and a blue diamond to the triangle, both at the top of the tiles. (Sadly, the green inner points 

tend to obscure these additions.) 
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Figure 17. Decorated Tiles. 

 

The code that make these additions: 

 
// in DrawShapes.java 

Tile sq = new Tile("data/sqTile.txt"); 

   

Graphics2D g2d = sq.getGraphics(); 

// red circle 

g2d.setColor(Color.RED); 

g2d.fillOval(40, 25, 10, 10);  // near top  

 

Tile equ = new Tile("data/equTile.txt"); 

   

g2d = equ.getGraphics(); 

// blue square 

g2d.setColor(Color.BLUE); 

g2d.fill( ShapeOps.nPolygon(50, 35, 8, 4));   

 

The coordinates used in the calls to Graphics2D.fillOval() and fill() were obtained by clicking 

the mouse over the tile images displayed by Tile.view(). A less 'hacky' approach is to utilize 

the coordinates for the tile's points, as in Pentagons.java: 

 

Shape s = ShapeOps.nPolygon(Tile.WIDTH/2, Tile.HEIGHT/2, 30, 5); 

s = ShapeOps.rotate(s, 90);   // rotate first point to top 

Tile t = new Tile(s, "pentagon"); 

ArrayList<Point2D.Double> pts = t.getImPts(); 

 

Graphics2D g2d = t.getGraphics(); 

g2d.setColor(Color.RED);       // red circle 

g2d.fillOval((int)pts.get(0).x-5, (int)pts.get(0).y+10, 10, 10); 

            // below top point of pentagon 

 

// blue triangle 

Shape tri = ShapeOps.radPolygon(50, 64, 7, 3);    

      // coordinates obtained from looking at Tile.view() 
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tri = ShapeOps.rotate(tri, 90);  // so tip points upwards 

g2d.setColor(Color.BLUE); 

g2d.fill(tri); 

 

This adds a red circle and a blue triangle to the pentagon tile, as shown in Figure 18. 

 

Figure 18. A Pentagon with a Red Circle and Blue Triangle. 

 

Another approach is possible if the tile is derived from a Java Shape. In that case, the shape 

can clip the drawing area to constrain any operations to the tile's surface. For example, the 

"Y" Tile in Stars.java has a red line drawn from the top-left to the bottom right of the image: 

 

Tile yTile = new Tile("data/yTile.txt");  

 

g2d = yTile.getGraphics(); 

g2d.setClip(yTile.getShape()); 

g2d.setColor(Color.RED); 

g2d.setStroke(new BasicStroke(2.0f)); 

g2d.drawLine(15, 0, yTile.getWidth(), yTile.getHeight()-5); 

 

The call to setClip() restricts the drawing operation to the "Y" shape, as shown in Figure 19. 

 

Figure 19. The "Y" Tile in Stars.java 
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Yet another approach is to use texture painting. The star tile (on the left of Figure 20) created 

in Stars.java shows that an image (on the right) can be used as a texture. 

 

Figure 20. The "Star" Tile in Stars.java, and its Texture Image. 

 

The code in Stars.java: 

 

Tile starTile = new Tile("data/starTile.txt"); 

Graphics2D g2d = starTile.getGraphics(); 

g2d.setPaint(Pics.loadTex("data/fabric.jpg")); 

g2d.fill( starTile.getShape());     

    // painting is constrained within the shape 

 

The final way to change the color of a tile is with Tile.colorChg() which, unlike the other 

approaches, generates a new tile. For instance,  it‟s employed to change the white parts of an 

hexagon tile to light blue in DrawShapes.java: 

 
private static final Color LIGHT_BLUE = new Color(173,216,230); 

  : 

Shape s = ShapeOps.nPolygon(60, 60, 50, 6);   

Tile hex = new Tile(s, "hexagon").colorChg(Color.WHITE, LIGHT_BLUE); 

 

Any non-white parts of the tile, such as its black edges, are unaffected. colorChg() uses a 

color distance metric to find the first color, and any 'similar' colors. This fuzzy matching is 

useful when modifying a tile where the quality of the image has been affected by operations 

such as rotation and resizing.  

 

2. Basic Tile Drawing 

This section describes the Tile.drawAt() operation which prints a tile onto an image.   
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DrawATriangle.java starts by creating an equilateral triangle with a fancy 'f' inside it (see 

Figure 21): 

 
Shape s = ShapeOps.radPolygon(Tile.WIDTH/2, Tile.HEIGHT/2, 30, 3);   

s = ShapeOps.rotate(s, 90);  

 

Tile tri = new Tile(s, "triangle"); 

Graphics2D g2d = tri.getGraphics(); 

g2d.setFont( new Font("Algerian", Font.PLAIN, 32)); 

g2d.drawString("f", 48, 67);  // centered 'f' 

 

 

Figure 21. An 'F' Triangle. 

 

The image drawn upon by the tile is managed by an ImageViewer object, which is usually 

created with a title string and window dimensions: 

ImageViewer iview = Pics.view("Draw a Triangle", 200, 200); 

This creates an empty window called "Draw A Triangle" of 200 by 200 pixels. A common 

alternative is to set the window's size with Pics.altScreen(): 

ImageViewer iview = Pics.view("Draw a Triangle", Pics.altScreen()); 

Pics.altScreen() tries to find a second monitor, and resizes the window to fill that screen. 

 

Tile.drawAt() typically takes four arguments: a reference to the image, a tile point label, and 

an (x, y) coordinate on the image where that point should be drawn. For example: 

tri.drawAt(iview.getImage(), "T0", 100, 50);    

This draws the tile so that its T0 point is located at (100,50) in the image managed by iview.  

The window is updated with a call to ImageViewer.repaint(): 

iview.repaint(); 

The resulting window is shown in Figure 22. 
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Figure 22. The Tiling Window for DrawATriangle.java 

 

Note that the tiling window does not show the tile's labels or inner and outer points.  

At this stage, the tile is now storing two sets of coordinates – its image coordinates, which are 

the position of its points relative to the tile image, and its tiling coordinates, the position of its 

points relative to the tiling image. This distinction is illustrated by the code below: 

 

System.out.println("Before drawing..."); 

System.out.println("  Image Center: " + tri.getCenterIm()); 

System.out.println("  Drawn Center: " + tri.getCenterLoc()); // null 

System.out.println("  Image Tip: " + tri.getPtIm("T0")); 

System.out.println("  Drawn Tip: " + tri.getPtLoc("T0"));   // null 

 

tri.drawAt(iview.getImage(), "T0", 100, 50);    

iview.repaint(); 

 

System.out.println("\nAfter drawing..."); 

System.out.println("  Image Center: " + tri.getCenterIm()); //no chg 

System.out.println("  Drawn Center: " + tri.getCenterLoc()); 

System.out.println("  Image Tip: " + tri.getPtIm("T0"));  // no chg 

System.out.println("  Drawn Tip: " + tri.getPtLoc("T0")); 

 

It outputs: 
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A tile has image coordinates before it is drawn, but no tiling coordinates. Afterwards, the 

image coordinate don‟t change, but its points do now have tiling coordinates. 

The most important methods related to these two coordinate systems are Tile.getPtIm() (for 

retrieving an image coordinate) and Tile.getPtLoc() (for accessing a tiling coordinate). 

 

A useful way to think about tile drawing is that the tile is a stencil printed onto the image. 

Subsequently, the tile can be moved (or rotated, etc.) and drawn at a new position on the 

tiling image without affecting the previously drawn copy.  

 

In the example above, the drawing position (100, 50) was hardwired into the code, but after 

the first drawing it's more usual to use the data returned by Tile.getPtLoc() to calculate a new 

coordinate. For instance, assume that DrawATriangle utilizes two tiles – the 'f' tile we've 

already met, and a rotated version (see Figure 23). Note that they both use T0, T1, and T2 as 

their point labels, but their tile IDs can be different. 

 

Figure 23. The 'f' and 'rot' Tiles. 

 

The rotated version can be created with one line of code: 

Tile rot = tri.rotate(180); 

rot.setID("rot");    // this does not change the point names 

 

The call to Tile.setID() is optional, but it useful for distinguishing between the tiles. 

How could the „rot‟ tile be positioned next to the 'f' tile? The trick is to think in terms of 

positioning their points. Once the 'f' tile has been drawn to the screen, its T0 point has a tiling 

location which can be used to position the „rot‟ tile using its T2 point (see Figure 24). 
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Figure 24. Positioning the 'rot' Tile next to the 'f' Tile. 

 

This can be coded like so: 

 

BufferedImage scrIm = iview.getImage(); 

 

tri.drawAt(scrIm, "T0", 30, 0); 

Point2D.Double pt = tri.getPtLoc("T0"); 

rot.drawAt(scrIm, "T2", pt); 

iview.repaint(); 

 

Once the 'rot' tile has been drawn , then its T1 tiling location can be used to redraw the 'f ' tile 

(see Figure 25). 

 

Figure 25. Adding Another 'f' Tile to the Image. 

 

This is coded like so: 

 

pt = rot.getPtLoc("T1"); 

tri.drawAt(scrIm, "T0", pt); 

iview.repaint(); 

 

The resulting tiling is shown in Figure 26. 
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Figure 26. Tiling Carried out in DrawATriangle.java 

 

Note that the calls to ImageViewer.repaint() cause the tiling window to be refreshed, which 

make the changes to the window visible on the screen. 

This technique of moving along a row by drawing a new tile based on its predecessor's 

location is at the heart of the row-by-row tiling approach described in the next section. 

The same idea can be employed to draw tiles down the image. The example in Figure 27 

draws the T2 point of the 'rot' tile using the 'f' tile's T1 location. 

 

Figure 27. Positioning the 'rot' Tile below the 'f' Tile. 

 

This is coded as: 

 

BufferedImage scrIm = iview.getImage(); 

 

tri.drawAt(scrIm, "T0", 30, 0); 

Point2D.Double pt = tri.getPtLoc("T1"); 

rot.drawAt(scrIm, "T2", pt); 

iview.repaint(); 

 

which results in Figure 28. 

 



22 
 

Figure 28. Vertical Tiling in DrawATriangle.java 

 

Incidentally, there are other ways of obtaining these tiling patterns. For instance, the vertical 

tiling could use the location of 'f's T2 point to position 'rot's T1. 

 

3. Row-by-Row Tiling 

The jFAT download includes many examples of row-by-row tiling (e.g. see DrawTris.java, 

DrawArrows.java, DrawBoxes.java, DrawHexs.java, Stars.java, Peanuts.java, and 

Axes.java). I'll look at DrawTris.java and DrawArrows.java in detail, focusing on how a 

{draw, down, next} triplet of points allows rows and columns of tiles to be generated using 

nothing more fancy than nested loops. This is simply a generalization of the approach I used 

in the last section. 

 

3.1. Drawing Triangles 

DrawTris.java uses two equilateral triangles containing the letter 'f', with one a 180 degree 

rotation of the other. Unlike in DrawATriangle.java, the tiles are created using a trif.png 

image (see Figure 29). 

 

Figure 29. trif.png. 

 

Since the Tile constructor cannot determine points from a plain image, they have to be 

supplied by the programmer: 

 

Tile t = new Tile("data/trif.png"); 

t.addPt("T0", 51,6);   // added in ccw order 

t.addPt("T1", 4,86);   // coords obtained by viewing the image 

t.addPt("T2", 97,86); 

 

Tile rot = t.rotate(180); 

rot.setID("rot");   
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Then the tiling image is created: 

 

ImageViewer iview = Pics.view("Triangles row-by-row", Pics.altScreen()); 

BufferedImage scrIm = iview.getImage(); 

int pWidth = scrIm.getWidth(); 

int pHeight = scrIm.getHeight(); 

 

Before I explain the tiling code, it helps to see what pattern I'm trying to achieve. Figure 30 

shows a screenshot of the final output. 

 

 

Figure 30. Triangles Tiled by DrawTris.java 

 

A {draw, down, next} triplet states how the current tile in a row ('draw') is related to the tile 

in the next row down ('down'), and to the next tile in the row ('next').  

The regularity of the tiling pattern in Figure 30 suggests a few ways of defining the triplet. 

One approach would be to create a new tile composed from two 'f' tiles and two 'rot' tiles (see 

Figure 31), but I'll leave off explaining composition until the next section. 

 

Figure 31. A Tile Composed from two 'f' and two 'rot' Tiles. 
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Instead, I'll formulate two {draw, down, next} triplets, as shown in Figure 32.  

 

Figure 32. Two {draw, down, next} triplets for  

Drawing Triangles. The 'r' in the labels stands for "rotated". 

 

The first row of tiles (see Figure 30) is controlled by the left hand triplet which involves 

printing an 'f' tile using its T0 point followed by a 'rot tile. The 'next' point is used to repeat 

this output , and the 'down' point is used to start the next row.  

The second row of tiles is controlled by the right hand triplet which involves printing a 'rot' 

tile using its T2 point and then a 'f' tile. The 'next' point is used to repeat this tiling, and the 

'down' point is used to start the next row.  

These triplets alternate, the left one controlling the drawing of odd rows and the right triplet 

managing the even rows. This is translated into the code: 

 

// display tiles row-by-row 

int rowNum = 1; 

Point2D.Double startPt = new Point2D.Double(30,0); 

Point2D.Double nextPt; 

 

while (startPt.y < pHeight) { 

  // start of a row 

  if (rowNum%2 == 1) {  // odd row; t then rot 

    t.drawAt(scrIm, "T0", startPt);   // draw at T0 

    rot.drawAt(scrIm, "T2", startPt); 

    startPt = t.getPtLoc("T1");   // down is T1 

    nextPt = rot.getPtLoc("T1");  // next is T1r 

  } 
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  else {  // even row; rot then t 

    rot.drawAt(scrIm, "T2", startPt);   // draw at T2r 

    t.drawAt(scrIm, "T0", rot.getPtLoc("T1")); 

    startPt = rot.getPtLoc("T0");  // down is T0r 

    nextPt = t.getPtLoc("T0");     // next is T0 

  } 

 

  // rest of row   

  while (nextPt.x < pWidth) { 

    if (rowNum%2 == 1) {  // odd row; t then rot 

      t.drawAt(scrIm, "T0", nextPt);  // draw at T0 

      rot.drawAt(scrIm, "T2", nextPt); 

      nextPt = rot.getPtLoc("T1");  // next is T1r 

    } 

    else {   // even row; rot then t 

      rot.drawAt(scrIm, "T2", nextPt);  // draw at T2r 

      t.drawAt(scrIm, "T0", rot.getPtLoc("T1")); 

      nextPt = t.getPtLoc("T0");     // next is T0 

    } 

    iview.repaint(); 

  } 

  Pics.pause(100);   // delay after each row is drawn 

  rowNum++; 

} 

 

At the start of a new row (i.e. at the start of the outer loop) there‟s an if-test which stores the 

'down' information for starting the next row (in the startPt variable), and a second variable for 

'next' (nextPt).  Note that there are always two calls to Tile.drawAt() since each drawing uses 

an 'f' and a 'rot' tile. 

The inner loop manages the rest of the printing of the row, so only the nextPt variable needs 

to be updated.  

The calls to ImageViewer.repaint() and the use of Pics.pause() mean that the tiling image is 

refreshed a row at a time, and there's a brief pause after each row is drawn. This delay isn‟t 

necessary for the implementation but produces a nice animation effect at run time. 

 

3.2. Drawing Arrows 

A screenshot of the execution of DrawArrows.java is shown in Figure 33. 
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Figure 33. Arrows Tiled by DrawArrows.java 

 

The left-facing arrow is defined in arrowTile.txt: 

 

Tile 100 20 

 225 84.8   90 84.8 

 135 30     270 90 

  90 30     0 30       

  90 90  $ 

 

Figure 34 show how these lengths and turning angles map to the shape, starting from point 

A0 at the top and moving counterclockwise. 

 

Figure 34. Turning Angles and Lengths for the Arrow Tile. 
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The angle used for A0 is 225 degrees since the „turtle‟ is assumed to be facing along the +x 

axis before it begins its journey around the shape.  

The arrow head lengths are approximated by 84.8, based on their actual lengths of 60√ .  

It's far from clear why an A5 point has been included half way along the back edge of the 

arrow. It will become useful when the {draw, down, next} triplets are formulated. 

DrawArrows.java loads the tile description to create a left-facing arrow, and then rotates it 

180 degrees to create a right-facing version. 

 

// create left- and right- pointing arrow tiles 

Tile left = new Tile("data/arrowTile.txt"); 

left.setID("left"); 

Graphics2D g2d = left.getGraphics(); 

// red circle 

g2d.setColor(Color.RED); 

g2d.fillOval(55, 78, 10, 10);  // near to the arrow tip 

 

Tile right = left.rotate(180); 

right.setID("right");  // this will not affect the point labels 

 

As in DrawTris.java, the tiling will be made up of odd and even rows – the odd rows consist 

of left-facing arrows, and even rows are a series of right-facing arrows. Each of these require 

its own {draw, down, next} triplet. Figure 35 shows the two types of row, and their triplets. 

 

Figure 35. Two {draw, down, next} triplets in DrawArrows.java.  

The 'r' in the labels stands for "rotated". 
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The nested loops for generating the tiling row-by-row are similar to the DrawTris.java 

example – the start of the outer loop decides whether this row is odd or even, and stores the 

'down' point for the next row in startPt. The inner loop progresses along the row (be it odd or 

even) using the 'next' argument.  

Note that the 'draw' point changes inside this loop to be the A1 point of the left arrow on even 

rows, and the A5 point of the right arrow on odd rows. For that reason it may be more 

accurate to write the triplets as {A7/A1, A3, A5} and {A4r/A5r, A6r, A1r}. 

 

ImageViewer iview = Pics.view("Draw Arrows", Pics.altScreen()); 

BufferedImage scrIm = iview.getImage(); 

int pWidth = scrIm.getWidth(); 

int pHeight = scrIm.getHeight(); 

 

// display tiles row-by-row 

int rowNum = 1; 

Point2D.Double startPt = new Point2D.Double(30,0); 

Point2D.Double nextPt; 

Tile t;   // can be either a left or right arrow 

 

while (startPt.y < pHeight) { 

  // start of a row 

  if (rowNum%2 == 1) {  // left arrow 

    t = randColor(left); 

    t.drawAt(scrIm, "A7", startPt);  // draw at A7 

    startPt = t.getPtLoc("A3");  // down is A3 

    nextPt = t.getPtLoc("A5");   // next is A5 

  } 

  else {  // right arrow 

    t = randColor(right); 

    t.drawAt(scrIm, "A4", startPt);  // draw at A4r 

    startPt = t.getPtLoc("A6");  // down is A6r 

    nextPt = t.getPtLoc("A1");   // next is A1r 

  } 

 

  // rest of row   

  while (nextPt.x < pWidth) { 

    if (rowNum%2 == 1) {  // left arrows 

      t = randColor(left); 

      t.drawAt(scrIm, "A1", nextPt);  // draw at A1 

      nextPt = t.getPtLoc("A5");    // next is A5 

    } 

    else {   // right arrows 

      t = randColor(right); 

      t.drawAt(scrIm, "A5", nextPt);  // draw at A5r 

      nextPt = t.getPtLoc("A1");   // next is A1r 

    } 

   iview.repaint(); 

  } 
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  Pics.pause(100);   // delay after each row is drawn 

  rowNum++; 

} 

 

Another change is the use of the randColor() to select a color at random to modify the tile: 

 

private static final Color[] colors = {  

     new Color(199,255,244), new Color(255, 210, 199), 

     new Color(255, 238, 119), new Color(221, 199, 255) 

}; 

 

private static Random rand = new Random(); 

 

private static Tile randColor(Tile t) 

{  return t.colorChg( colors[rand.nextInt(colors.length)]);  } 

 

 

4. Tile Composition 

Tile composition creates a new tile by combining simpler tiles. As an example, I'll explain 

how to build the composite tile in Figure 31 from four equilateral triangle tiles. The 

composite will be used to tile the screen, producing the same effect as in Figure 30, but with 

only one kind of row. 

At the heart of composition is the idea that a tile (or tiles) can be drawn to any image, not just 

one managed by ImageViewer. The resulting image can be used to create a new tile in the 

same way as explained in section 1.3. 

 

4.1. Creating a Composite from Triangles 

DrawCTris.java begins by creating an equilateral triangle, and a rotated version, in the same 

way as DrawTris.java in section 3.1. It uses these triangles to build the composite shown on 

the right of Figure 36. 

 

Figure 36. The Tiles Used in DrawCTris.java. 
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The corresponding code: 

 

private static Tile makeComposite() 

{ 

  Tile t = new Tile("data/trif.png"); 

  t.addPt("T0", 51,6); 

  t.addPt("T1", 4,86);  

  t.addPt("T2", 97,86); 

  t.view(); 

  t.reportPoints(); 

 

  Tile rot = t.rotate(180); 

  rot.setID("rot"); 

 

  BufferedImage im = new BufferedImage(TILE_WIDTH, TILE_HEIGHT,  

                  BufferedImage.TYPE_INT_ARGB);  // alpha channel 

  int xc = TILE_WIDTH/2;  // center of image 

  int yc = TILE_HEIGHT/2; 

 

  Point2D.Double[] corners = new Point2D.Double[6]; 

 

  /* The composite is four triangles drawn around a point;  

     the corner points are collected */ 

  t.drawAt(im, "T2", xc, yc); 

  corners[0] = t.getPtLoc("T0");  

  corners[1] = t.getPtLoc("T1");  

 

  rot.drawAt(im, "T1", xc, yc); 

  corners[2] = rot.getPtLoc("T0");  

 

  t.drawAt(im, "T0", xc, yc); 

  corners[3] = t.getPtLoc("T2");  

 

  rot.drawAt(im, "T0", xc, yc); 

  corners[4] = rot.getPtLoc("T0");  

  corners[5] = rot.getPtLoc("T1");  

 

  // create composite tile from the image, and add its corners 

  Tile ctTile = new Tile(im, "comp"); 

  for (int i=0; i < corners.length; i++) 

    ctTile.addPt("C"+i, corners[i]); 

 

  ctTile.view(); 

  ctTile.reportPoints(); 

  return ctTile; 

}   // end of makeComposite() 

 

makeComposite() creates a BufferedImage object called im with an alpha channel so that its 

background will be transparent. Then two 'f' tiles and two 'rot' tiles are drawn around its 
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center, and important coordinates are stored in a corners[] array. These are used at the end to 

add points to the composite tile. Figure 37 shows the output generated by Tile.view() and 

Tile.reportPoints() at the end of the function. 

 

 

Figure 37. The Composite Tile. 

 

Only a single {draw, down, next} triplet is needed for this composite tile, as shown in Figure 

38. 

 

Figure 38. The {draw, down, next}triplet  

used in DrawCTris.java. 

 

The triplet translates into a nested loop which doesn't require a rowNo variable for extra if-

tests: 
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ImageViewer iview = Pics.view("Using a Composite",   

                                        Pics.altScreen()); 

BufferedImage scrIm = iview.getImage(); 

int pWidth = scrIm.getWidth(); 

int pHeight = scrIm.getHeight(); 

 

Point2D.Double startPt = new Point2D.Double(30,0); 

Point2D.Double nextPt; 

 

while (startPt.y < pHeight) { 

  // start of a row 

  ct.drawAt(scrIm, "C0", startPt);   // draw at C0 

  startPt = ct.getPtLoc("C2");    // down is C2 

  nextPt = ct.getPtLoc("C5");     // next is C5 

 

  // rest of row   

  while (nextPt.x < pWidth) { 

    ct.drawAt(scrIm, "C0", nextPt);  // draw at C0 

    nextPt = ct.getPtLoc("C5");      // next is C5 

    iview.repaint(); 

  } 

  Pics.pause(100);   // delay after each row is drawn 

} 

 

4.2. Composites for Penrose Tiles 

The Penrose P2 tiles (the dart and the kite; see Figure 7) will be utilized in section 9 by the 

built-in tiling functions, tileLocs() and tileSpacey(). The results will be fairly good, although 

a few unsightly gaps will appear in the tessellation. One way to address this problem is to 

utilize composite tiles; the seven types [3] are shown in Figure 39. 

 

Figure 39. Composite Tiles Using Penrose's Dart and Kite. 
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The composites are simpler to work with because there's less choice in how they can be 

placed together as compared to the more versatile dart and kite. 

PenroseClusters.java contains seven functions (e.g. makeAceTile()) which build these 

composites ) The program displays the windows shown in Figure 40. 

 

Figure 40. Composites made by PenroseClusters.java. 

 

I'll briefly look at how makeAceTile() produce the Ace tile. 

The dart and kite are defined in tile data files, as explained back in section 1.2, and their 

points are defined as in Figure 41. 

 

Figure 41. Labeled Dart and Kite Tiles. 
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An Ace is built from two kites and a dart, which are rotated and drawn onto a blank image. 

Deciding on the rotation values requires a good knowledge of the angles used in the dart and 

kite (see Figure 6), but I eventually went for the angles illustrated in Figure 42.  

 

Figure 42. Rotating and Positioning Tiles to make an Ace. 

 

Although Figure 42 shows the angles relative to a corner, Tile.rotate() applies a rotation to a 

tile around its center. Each one is positioned in the final image by drawing the red-colored 

points (K0, K2 and D2) at the point "ct". 

The coordinates for the Ace (labeled as green circles in Figure 42) are collected as each tile is 

drawn onto the image, and used in calls to Tile.addPts() at the end of makeAceTile(): 

 

private static Tile makeAceTile() 

// generate an 'Ace' Penrose cluster 

{ 

  int w = TILE_WIDTH*2;  

  int h = TILE_HEIGHT*2; 

  BufferedImage im = new BufferedImage(w, h,  

                BufferedImage.TYPE_INT_ARGB);  // alpha channel 

 

  Point2D.Double[] corners = new Point2D.Double[4]; 

 

  // Draw an 'Ace' around center of image, and collect corners 

  Tile leftKite = kite.rotate(18); 

  leftKite.drawAt(im, "K2", w/2, h/2); 
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  corners[0] = leftKite.getPtLoc("K3");   // will become A0 

  corners[1] = leftKite.getPtLoc("K0");   // A1 

 

  Tile rightKite = kite.rotate(90); 

  rightKite.drawAt(im, "K0", w/2, h/2); 

  corners[3] = rightKite.getPtLoc("K2");   // A3 

   

  Tile bottomDart = dart.rotate(36+90); 

  bottomDart.drawAt(im, "D2", w/2, h/2); 

  corners[2] = bottomDart.getPtLoc("D0");   // A2 

 

  // create a tile using the image and corners 

  Tile t = new Tile(im, "ace"); 

  for (int i=0; i < 4; i++) 

    t.addPt("A"+i, corners[i]); 

  return t; 

}   // end of makeAceTile() 

 

 

4.3. Reproducing Escher's "Square Limit"  

One of my aims for jFAT was to make it powerful enough to generate Escher tessellations 

such as "Square Limit" [8] shown in Figure 44. 
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Figure 44. “Square Limit” by M.C. Escher (1964).  

https://www.wikiart.org/en/m-c-escher/square-limit 

 

DrawFish.java is my attempt at reproducing the picture, with its output displayed in Figure 

45. 
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Figure 45. The Output of DrawFish.java. 

 

Before I began coding DrawFish.java I thought I would need to utilize recursive but, too my 

surprise, it was easier to view the drawing as a series of tile compositions, starting from a 

single 'fish' tile, building up to a tile representing a quarter of the final image; this 'quarter' tile 

was rotated three times to produce Figure 45. 

The quarter I focused upon is shown in Figure 46, with its component tiles outlined in red. 
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Figure 46. The Quarter Tile and its Components. 

 

The similarities  between the component squares and triangles is a little easier to see if they 

are labeled as in Figure 47.  

 

Figure 47. The Labeled Components of the Quarter Tile. 

 

If the issue of size is ignored, the quarter is made from five unique tiles labeled as "c", "l", 

"a", "b", and "r". Also, an "a" tile is always paired with a "b" tile, and so we could reduce the 
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five tiles to four. (Incidentally, if we‟re prepared to ignore rotations as well, then the "b" tile 

is just the "a" tile rotated clockwise by 90 degrees, but I'm not going to follow that approach.) 

Ignoring the "c" tile for a moment, Figure 48 shows enlarged versions of the "l", "a", "b", and 

"r" tiles.  

 

Figure 48.The "l", "a", "b", and "r" Tiles. 

 

These tile are composed from a single 'fish' tile which has been rotated and sometimes 

resized. This is made clear by adding dotted lines in Figure 49. 

 

Figure 49. The 'fish' Components of "l", "a", "b", and "r". 

 

It‟s now necessary to create a tile for every 'fish' orientation employed in Figure 49. Six tiles 

are needed, as shown in Figure 50. 
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Figure 50. Rotated and Flipped Fish Tiles. 

 

"p0" is the original 'fish', and the others tiles are rotated and flipped versions of that one.  

DrawFish.java will start by generating the six fish tiles in Figure 50, and then combine them  

to create the "l", "a", "b", and "r" tiles of Figure 49. In turn, they will be composed in the 

style of Figure 47 to make a 'quarter' tile, and that tile will be rotated to generate the final 

image. 

Although I‟m going to describe all of DrawFish.java at once, it‟s useful to note that I actually 

wrote it in the three steps outlined in the previous paragraph. At each stage, I used Tile.view() 

and Tile.reportPoints() to check that the composites were correct before moving onto 

generating the next larger tile. 

 

4.3.1. Building the Basic Fish 

The original fish image, and the other five fish tiles are created like so: 

 

// in DrawFish.java 

tilesMap = new HashMap<String,Tile>(); 

 

Tile fish = new Tile("data/fish.png"); 

fish.addPt("Head", 35,33); 

fish.addPt("Left", 35, 163); 

fish.addPt("Right", 100, 100);   // at the center of this image 

fish.addPt("Tail", 165, 163); 
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// store the fish for later 

tilesMap.put("p0", fish); 

tilesMap.put("p90", fish.rotate(90). 

                          colorChg(Color.WHITE, GRAY_GREEN)); 

 

Tile flippedFish = fish.flip(Pics.HORIZ); 

tilesMap.put("f45", flippedFish.rotate(45). 

                          colorChg(Color.WHITE, GRAY_GREEN)); 

tilesMap.put("f135", flippedFish.rotate(135). 

                          colorChg(Color.WHITE, LIGHT_BROWN)); 

tilesMap.put("f225", flippedFish.rotate(225)); 

 

The "p0" fish is shown in Figure 51, along with its labeled points. 

 

 

Figure 51. The "p0" Fish. 

 

All of these fish are stored in a global HashMap to make them easier to access later.  

I've also broken with 'tradition' by using descriptive names for the point labels; this makes it 

considerably easier to visualize the more complex drawings. 

 

4.3.2. The Mid-level Fish 

The "l", "a", "b", and "r" fish are created in their own functions: 

 

// composite tiles 

tilesMap.put("mid", makeMid());            // the "a"+"b" tiles 

tilesMap.put("rightEnd", makeRightEnd());  // the "l" tile 

tilesMap.put("leftEnd", makeLeftEnd());    // the "r" tile 
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I'll explain how the "mid" tile (a combination of "a" and "b") is made by referring to Figure 

52 which labels those tiles with their simpler fish elements from Figure 49. 

 

 

Figure 52. Building the "mid" Tile. 

 

The resizing noted in Figure 52 is by a factor of √  
⁄ . 

makeMid() closely follows Figure 52, with the added requirement to gather the corner points 

of the new tile, which are passed to Tile.addPt() at the end of the function. 

 

private static Tile makeMid() 

{ 

  BufferedImage im = new BufferedImage(460, 260,  

                     BufferedImage.TYPE_INT_ARGB);  // alpha channel 

 

  Point2D.Double startPt = new Point2D.Double(15, 15); 

     // near the top left point 

 

  Point2D.Double[] corners = new Point2D.Double[4]; 

 

  // left side square (tile 'a') --------- 

 

  // tile along the top of the square 

  Tile top = tilesMap.get("f135").resize(SCALE); 

  top.drawAt(im, "Tail", startPt); 

  corners[3] = startPt; 

 

  // tile up the left side of the square 

  Tile left = tilesMap.get("f225").resize(SCALE); 

  left.drawAt(im, "Head", startPt); 

  corners[0] = left.getPtLoc("Tail"); 

 

  // tile in the bottom right corner of the square 

  Tile right = tilesMap.get("p90");  
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  right.drawAt(im, "Head", corners[0]); 

 

  Point2D.Double rightPt = right.getPtLoc("Tail"); 

 

  // right side square (tile 'b') -------- 

 

  // tile along the top of the square 

  top = tilesMap.get("f135").resize(SCALE); 

  top.drawAt(im, "Tail", rightPt); 

  corners[2] = top.getPtLoc("Head"); 

 

  // tile down the right side of the square 

  right = tilesMap.get("f45").resize(SCALE); 

  right.drawAt(im, "Tail", corners[2]); 

  corners[1] = right.getPtLoc("Head"); 

 

  // tile in the bottom left corner of the square 

  left = tilesMap.get("p0");  

  left.drawAt(im, "Head", rightPt); 

 

  Tile midTile = new Tile(im, "mid"); 

  for (int i=0; i < 4; i++) 

    midTile.addPt("C"+i, corners[i]); 

 

  return midTile; 

}   // end of makeMid() 

 

makeLeftEnd(), makeMid(), and makeRightEnd() create the composite tiles shown in Figure 

53.  They are stored in the global HashMap with the names "leftEnd", "mid", and "rightEnd". 

 

Figure 53. The 'l', 'mid', and 'r' Tiles. 

 

4.3.3. Building the 'quarter' Tile 

makeQuarter() builds Figure 47, which is redrawn in Figure 54 to use the 'l', 'mid' and 'r' tiles, 

and to include start points and three levels. 
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Figure 54. Drawing the 'quarter' Tile. 

 

After the 'c' tile has been drawn, the rest of the quarter can be viewed as three levels (or rows) 

which start with an 'l' tile, then a certain number of 'mid' tiles, and finishes with a 'r' tile. For 

each level, it's necessary to calculate the start point, the number of 'mid' tiles, and to resize the 

tiles appropriately for that level. makeQuarter() delegates most of that work to a drawLevels() 

function: 

 

private static Tile makeQuarter() 

{ 

  BufferedImage im = new BufferedImage(1000, 500,  

                 BufferedImage.TYPE_INT_ARGB);  // alpha channel 

 

  Point2D.Double tip = new Point2D.Double(500,500); 

     // bottom edge, in the middle of the drawing area 

 

  Tile cTile = tilesMap.get("f135").resize(1.0/SCALE); // enlarge 

  cTile.drawAt(im, "Left", tip); 

 

  Point2D.Double startPt = cTile.getPtLoc("Tail"); 

 

  Pair<Point2D.Double, Point2D.Double> endPts =  

                             drawLevels(1, 3, 1, im, startPt);     

       // returns <left, right> top corners of quarter 

 

  Tile quarTile = new Tile(im, "quarter"); 

  quarTile.addPt("C0", tip); 

  quarTile.addPt("C1", endPts.getY());  // top right corner 

  quarTile.addPt("C2", endPts.getX());  // top left corner 

  return quarTile; 

}   // end of makeQuarter() 
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After drawLevels() has finished the three levels, the final image is converted into a tile which 

has the triangular form shown in Figure 55. 

 

Figure 55. The 'quarter' Tile. 

 

Although I started this subsection by saying that DrawFish.java does not use recursion, that's 

not quite true since drawLevels() is tail-recursive. However, it could be rewritten to be 

iterative, so the recursion isn't essential. 

Each call to drawLevels() constructs a single level, like the one depicted in Figure 56. 

 

Figure 56. Drawing One Level with drawLevels(). 

 

The row begins at startPt, with the 'l' tile drawn using its C0 point. A loop renders the 'mid' 

tiles by drawing them with their C3 points, and linking the next 'mid' tile to the C2 point of 

the current tile. Finally the 'r' tile is drawn with its C2 point. 

 

private static Pair<Point2D.Double, Point2D.Double>  

          drawLevels(int level, int n, int numMids,  

                     BufferedImage im, Point2D.Double startPt) 

{ if (level > n) { 

    System.out.println("Level error"); 

    return null; 

  } 

 

  double lvlScale = Math.pow(0.5, level-1); 

 

  // draw one row, left-to-right for level 

  Tile t = tilesMap.get("leftEnd").resize(lvlScale);  

  t.drawAt(im, "C0",  startPt); 

  Point2D.Double nextStartPt = t.getPtLoc("C2"); 

  Point2D.Double topLeft = t.getPtLoc("C1"); 
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  for (int i=0; i < numMids; i++) { 

    t = tilesMap.get("mid").resize(lvlScale);  

    t.drawAt(im, "C3", topLeft); 

    topLeft = t.getPtLoc("C2"); 

  } 

 

  t = tilesMap.get("rightEnd").resize(lvlScale);  

  t.drawAt(im, "C2",  topLeft); 

  Point2D.Double nextEndPt = t.getPtLoc("C1"); 

 

if (level == n)   // finished 

  return new Pair<Point2D.Double, Point2D.Double>( 

                                  nextStartPt, nextEndPt); 

  else { 

    return drawLevels(level+1, n, 2*numMids+2, im, nextStartPt);  

  } 

}  // end of drawLevels() 

 

 

4.3.4. Building the Final Image 

makeQuarter() generates a triangular tile like the one in Figure 55. The final step is to draw 

that tile four times around a center point (labeled as “tip” in the figure).  

 

Tile quarTile = makeQuarter(); 

 

double horizDist = quarTile.length("C1", "C2"); 

int pWidth = (int)Math.round( horizDist * 1.05);   

int pHeight = (int)Math.round( horizDist * 1.05);  

       // adds a small border around the rendered image 

 

ImageViewer iview = Pics.view("Square Limit", pWidth, pHeight); 

BufferedImage im = iview.getImage();  

 

// color the background 

Graphics2D g2d = Pics.createGraphics(im); 

g2d.setColor(LIGHT_BLUE); 

g2d.fillRect(0, 0, pWidth, pHeight); 

 

// display 4 'quarters' around the center 

for (int i = 0; i < 4; i++) { 

  Tile t = quarTile.rotate(90*i); 

  t.drawAt(im, "C0", pWidth/2, pHeight/2); 

  iview.repaint(); 

  Pics.pause(100); 

} 

 

6.3.5. Comparison with Henderson's "Functional Geometry" Approach 
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M.C. Escher's "Square Limit" is the subject of an influential paper by Peter Henderson [7] 

which utilizes functional programming to present a high-level algebraic description of image 

composition which hides details such as coordinates and dimensions. The first version of the 

paper appeared in 1982, but was revised in 2002. The original broke the basic fish into four 

smaller tiles, as in Figure 57 [9].  

 

Figure 57. Tiles Used by Henderson in 1982. 

 

Crucially this choice of tiles means that the functional description only uses 90 degree 

rotations so that the overall image can be viewed as a check board of smaller image frames 

composed using functional beside() and above() operations. They build bigger image frames 

by placing images side-by-side or above each other. 

Although very elegant, this approach was not used by Escher himself, and so the 2002 paper 

took the fish on the left of Figure 57 as the basic tile (which I've also done). This requires the 

introduction of a rot45() function, which is somewhat deceptively named. It does indeed 

rotate an image counterclockwise  by 45 degrees, but also scales the picture by √  
⁄  and 

performs the rotation around the tile‟s top-left corner rather than the center.  

The operational semantics is based upon a triplet of vectors that define the position and 

orientation of an image frame. rot45() only works correctly if the frames are square, and 

Henderson also points out that rot45() doesn't follow the same pleasing algebraic rules 

exhibited by the other operations such as beside() and above(). A third change is that above() 

and beside() must be generalized to allow the specification of subpicture ratios which gives 

them greater control over the scaling of adjacent frames. 

In conclusion, the high-level capabilities deployed in the paper are quite closely tied to the 

grid-based format of Escher's "Square Limit" picture. Indeed, Henderson argues that a more 

general algebraic geometry language would need explicit operations for translation, scaling, 

and rotations, and recent functional graphics libraries have included these features [2, 4]. 

 

5. Recursion 
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DrawHorses.java stays with Escher-style tessellation but switches from fish to horses, and 

employs recursive drawing. This example was suggested by a series of slides written by Piers 

Chandler, available at https://slideplayer.com/slide/9037436/. The output generated by the 

program is shown in Figure 58. 

 

Figure 58. The Output of DrawHorese.java. 

The tiling utilizes a single horse image with six points (see Figure 59). 

 

Figure 59. The Horse with Corner Points.  

(The blue lines are not part of the image.) 
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The tile in Figure 59 is created with the following code, which also generates a light brown 

horse: 

 

Tile horse = new Tile("data/horse.png"); 

horse.addPt("C0", 165,30);   

horse.addPt("C1", 90,210); 

horse.addPt("C2", 129,300); 

horse.addPt("C3", 165,210); 

horse.addPt("C4", 201,300); 

horse.addPt("C5", 240,210); 

 

Tile darkHorse = horse.colorChg(Color.WHITE, LIGHT_BROWN); 

 

The recursive nature of the tiling is illustrated by Figure 60 – each horse tile is responsible for 

drawing three smaller horses below it. 

 

Figure 60. Recursive Horses in Outline (to three levels). 

 

Figure 60 is implemented by drawLevel(): 

 

private static void drawLevel(int n, int max, Tile h0, Tile h1,  

                      Point2D.Double topPt, ImageViewer iview) 

{ 

  if (n > max) 

    return; 

 

  Tile t = (n%2 != 0) ? h0 : h1; 

  t.drawAt(iview.getImage(), "C0", topPt);  // top of horse 
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  Tile smallH0 = h0.resize(0.5); 

  Tile smallH1 = h1.resize(0.5); 

  drawLevel(n+1, max, smallH0, smallH1, t.getPtLoc("C1"), iview); 

  drawLevel(n+1, max, smallH0, smallH1, t.getPtLoc("C3"), iview); 

  drawLevel(n+1, max, smallH0, smallH1, t.getPtLoc("C5"), iview); 

 

  iview.repaint(); 

} // end of drawScene() 

 

The two tile arguments hold the original horse and the brown version, allowing rendering to 

swap between them based on the current level. 

In main(), a call to drawLevel() creates a single 'tree' of horses, which has to be repeated eight 

times around the center of the image: 

 
ImageViewer iview = Pics.view("Horses", PWIDTH, PHEIGHT); 

 

// color the background 

Graphics2D g2d = Pics.createGraphics(iview.getImage()); 

g2d.setColor(LIGHT_BLUE); 

g2d.fillRect(0, 0, PWIDTH, PHEIGHT); 

 

Point2D.Double startPt = new Point2D.Double(PWIDTH/2, PHEIGHT/2); 

                                           // center of screen 

// draw eight times around the start point 

for (int i=0; i < 8; i++) { 

  Tile h0 = horse.rotate(45*i); 

  Tile h1 = darkHorse.rotate(45*i); 

  if (i%2 == 0)  // swap horses based on i 

    drawLevel(1, 4, h0, h1, startPt, iview);   // four levels 

  else 

    drawLevel(1, 4, h1, h0, startPt, iview); 

  Pics.pause(50); 

} 

 

A close examination of DrawHorses.java reveals that there isn't any need for the points C2 

and C4, but I‟ve left them in so that the blue outline used in Figure 59 and 60 is vaguely 

horse-shaped. 

 

6. Extra Data (Part 1): Inner and Outer Points 

Although we‟ve seen inner and outer points displayed by Tile.view() and ViewTile.java 

many times (e.g. see Figures 2 and 5), we haven't used them because all the tilings were 

created with Tile.drawAt().  

Tile.drawAt(image, "point name", coordinate) 
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Inner points are employed for collision detection between tiles, which is implemented in 

terms of whether a tile's inner point has been drawn on the screen at a pixel that was 

transparent. This relies on the fact that the tiling surface is initially transparent, and also that 

the non-shape parts of a tile are transparent. We saw these requirements in the composition 

examples when the image for a new tile was created with a transparent background: 

  BufferedImage im = new BufferedImage(width, height,  

            BufferedImage.TYPE_INT_ARGB);  // alpha channel 

 

Collision detection is utilized in the more complex drawing operations, Tile.tryDrawAt() and 

Tile.testDrawAt() which will be explained in section 7, and also by the built-in tiling 

functions, tileLocs() and tileSpacey(), in section 9. 

Outer points are used to detect if there are other tiles adjacent to a tile. One outer point is 

usually assigned to each tile side so that the sides occupied by the other tiles can be 

determined. This functionality is employed in tileLocs() and tileSpacey() to decide if a tile 

needs another tile drawn next to it to fill up the screen. 

Once a tile has been assigned „corner‟ points then jFAT can create inner and outer points 

automatically, but the results can be rather poor, especially if the shape has concave sides. 

For that reason, jFAT checks whether any of the generated inner points are outside the 

shape's borders, and if any of the outer points are inside those borders. It discards those 

points, and issues warning messages. When such messages appear, it's probably necessary for 

the programmer to define their own inner and/or outer points. 

For a tile based on a shape or tile data, the simplest way to check the inner and outer points is 

to load it in ViewTile, as in Figure 61. 

 

Figure 61. Viewing the Kite Tile. 

 

There are no warnings in Figure 61 since the kite is a convex shape. However, the dart in 

Figure 62 does produce a few. 
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Figure 62. Viewing the Dart Tile. 

 

A tile created from an image (PNG or SVG) will require the user to add their own „corner‟ 

points by calling Tile.addPt(), as in the case of the horse tile in section 5 (see Figure 59): 

 

Tile horse = new Tile("data/horse.png"); 

horse.addPt("C0", 165,30);   

horse.addPt("C1", 90,210); 

horse.addPt("C2", 129,300); 

horse.addPt("C3", 165,210); 

horse.addPt("C4", 201,300); 

horse.addPt("C5", 240,210); 

horse.view(); 

horse.reportPoints() 

 

The output is shown in Figure 63. 

 

Figure 63. Viewing the Horse Tile. 
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The irregular shape causes three inner points and an outer point to be dropped. However, 

since the tiling is only going to utilize Tile.drawAt(), it doesn't really matter. 

 

6.1. Fixing the Escher Lizard 

Section 9.1 will explain how to tile a surface with Escher-style lizards by calling tileLocs(). 

Since tileLocs() relies on inner and outer points, its data must be correct. However, the 

automatically generated points for the lizard image are less than stellar, as shown in Figure 

64. 

 

// in DrawLizards.java 

lizard = new Tile("data/liz.png"); 

lizard.addPt("C0", 113, 43);    // obtained from MS paint 

lizard.addPt("C1", 57, 80); 

lizard.addPt("C2", 61, 147); 

lizard.addPt("C3", 126, 186);   // defines a hexagon 

lizard.addPt("C4", 193, 148); 

lizard.addPt("C5", 184, 73); 

 

lizard.view(); 

lizard.reportPoints(); 

 

 

Figure 64. Viewing the Lizard Tile. 

 

Since three inner points are discarded, the coverage is quite poor with no points along the 

lizard's arms, legs, or tail. It‟s likely that collision detection will fail to detect when the arm of 

a lizard crosses the leg of another. 

Also, although none of the outer points were rejected, a few more could profitably be added 

along several of the tile‟s sides. 
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Spotty to the Rescue 

User-defined inner and outer points are added by Tile.addInner() (or Tile.addInners()) and 

Tile.addOuter(). However, how should their coordinates be determined? One (slowish) 

approach is to click the mouse over a view window, and note down the cursor information 

that appears in the popup window (e.g. see Figure 9). A faster solution is to call the jFAT 

Spotty application shown in Figure 65. 

 

Figure 65. A Spotty Lizard. 

When the user clicks the mouse over the image, a blue dot appears and its coordinate is 

printed. If a spot is poorly positioned, the user can type 'u' to remove it. When Spotty is 

closed, a useful snippet of code is printed: 

 

These array definitions can be pasted into code as inputs to Tile.addInners(), as in 

DrawLizards.java: 

 

lizard = new Tile("data/liz.png"); 

lizard.addPt("C0", 113, 43); 

lizard.addPt("C1", 57, 80); 

lizard.addPt("C2", 61, 147); 

lizard.addPt("C3", 126, 186); 

lizard.addPt("C4", 193, 148); 

lizard.addPt("C5", 184, 73); 

 

double[] xs = new double[] {    // obtained using Spotty.java 

     57,  86,  91,  82,  70, 103,  85,  94, 

    112, 116, 138, 149, 172, 182, 197, 179, 



55 
 

    154, 156, 126, 126, 141, 111 }; 

double[] ys = new double[] { 

     66,  58,  88, 112, 132, 155, 137, 197, 

    181, 123, 123, 158, 151, 115, 103,  84, 

     89, 105,  86,  49,  29, 103 }; 

lizard.addInners(xs, ys);  

 

// outers are automatically generated 

 

lizard.view(); 

lizard.reportPoints(); 

 

Figure 66 shows a view of the revised lizard tile, with the default inner points replaced by the 

user's data. Note that the default outer points are still being utilized. 

 

Figure 66. Viewing the Lizard Again. 

 

6.2. Supplying Outer Points 

Isoceles.java employs tileSpacey() to tile the screen with triangles, producing something like 

Figure 67. 
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Figure 67. Tiling Using Isoceles.java 

 

The triangle tile utilizes user-defined outer points: 

 

tri = new Tile("data/isoTile.txt"); 

Graphics2D g2d = tri.getGraphics(); 

g2d.setColor(Color.RED); 

g2d.fillOval(48,40, 6, 6);  // coord obtained by using ViewTile 

 

double[] xs = new double[] { 

     50,  49,  45,  53,  40,  49,  59,  38, 

     51,  59,  35,  50,  61 }; 

double[] ys = new double[] { 

     36,  47,  64,  63,  80,  80,  80,  93, 

     93,  93, 105, 103, 103 }; 

tri.addInners(xs, ys); 

 

tri.addOuter("I0", "I1", 29, 63); 

tri.addOuter("I1", "I2", 48, 122); 

tri.addOuter("I2", "I0", 72, 67); 

 

tri.view(); 

tri.reportPoints(); 

 

A call to Tile.addOuter() is passed two point labels which define the side associated with the 

outer point. Usually a single outer point located a short distance from the side‟s midpoint is 

sufficient; that kind of positioning can be seen in Figure 68. 
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Figure 68. The Isosceles Triangle Displayed in Tile.view(). 

 

The Spotty application can also be used to generate outer points, although it doesn‟t output 

Tile.addOuter() code snippets.  

 

7. Testing a Tile for Overlaps 

Inner points are used by Tile.tryDrawAt() and Tile.testDrawAt() to detect collision detection 

between tiles. Both functions work in a similar manner – a copy is made of the surface image, 

and Tile.drawAt() is used to draw the tile onto that copy. Once printed, the location of the 

tile‟s inner points can be retrieved and used for collision detection tests back on the original, 

unmodified surface image. If those pixel locations are transparent then that space is not being 

used by another tile.  

The drawback is that only the inner point coordinates are checked, not the entire area taken 

up by the tile, and so there‟s a chance that an overlap will be missed. For example, if you 

look closely at Figure 67, you can see that such overlaps do occasionally occur when placing 

the triangle tiles. 

If no overlaps are detected then tryDrawAt() returns the modified surface image, and the 

programmer can use it to update ImageViewer. Alternatively, testDrawAt() does that update 

for you, and only returns a boolean to indicate if any collisions were detected. 

tryDrawAt() and testDrawAt() do not use outer points.  

 

In the following example, Peanuts.java tiles the screen with a peanut shape (two hexagons 

sharing a side; see Figure 69). The tile has a blue dot near one corner to help the user discern 

how a peanut is oriented in the final tiling (see Figure 74). 
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Figure 69. The Peanut. 

 

The tiling utilizes six peanut orientations shown in Figure 70. 

 

Figure 70. Six Peanuts. 

 

Figure 70 includes an arrow in each peanut to indicate its orientation relative to its blue dot.  

The arrows and the points marked with red dots are not drawn at tiling time. 

The tiling is performed row-by-row, with the surface image treated as a hexagonal grid to be 

filled with random nuts. Drawing starts on a row at a grid location (marked in gray in Figure 

71), and moves to the right in steps of two hexagons. When one of the peanuts in Figure 70 is 

drawn, the point labeled with a red dot is used to position the peanut at the top-left corner of 

the hexagon.  
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Figure 71.  The Stages in Filling a Row. 

 

The difficulty with this approach is that a peanut takes up two hexagons, and the random 

choice means that a collision may occur when a peanut is drawn. This disaster is depicted in 

Figure 72 when the intended position of the fourth peanut will overlap with the previous one. 

 

Figure 72. When Peanuts Collide! 

 

Peanuts.java solves this problem by calling Tile.TestDrawAt(). If it returns true than there „s 

no problem. If it returns false then a collision means that the screen image wasn‟t updated. In 

that case, a different peanut is selected and the drawing retried. 

The six peanuts are derived from a single tile which is rotated in steps of 60 degrees to 

generate the others. Those tiles, and their labels (the red dots in Figure 70), are stored in 

arrays: 

 

// A peanut with a blue dot at one end 

Tile p = new Tile("data/nutTile.txt"); 

Graphics2D g2d = p.getGraphics(); 

g2d.setColor(Color.BLUE); 

g2d.fillOval(110, 36, 10, 10);  

 

// create tiles for all the possible rotations of the peanut 
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Tile[] peanuts = new Tile[NUM_NUTS]; 

for (int i=0; i < NUM_NUTS; i++) { 

  peanuts[i] = p.rotate(60*i); 

  peanuts[i].view();     

} 

 

String[] drawPts = new String[] {  // the labels in Figure 70 

      "N6", "N5", "N4", "N3", "N2", "N7" }; 

 

The row-by-row algorithm utilizes precalculated offsets (see Figure 73) to move over the 

drawing surface as if it contained hexagon areas. The offsets are based on the horizontal and 

vertical distances between the corners of a hexagon in a peanut.  

 

 

Figure 73. Offsets Between Hexagons. 

 

The code uses nested loops as usual, but the inner loop does something new with 

Tile.TestDrawAt(). 

 

// calculate offsets between an hexagon  

Point2D.Double pt6 = peanuts[0].getCartesian("N6"); 

Point2D.Double pt2 = peanuts[0].getCartesian("N2"); 

Point2D.Double pt4 = peanuts[0].getCartesian("N4"); 

double xOffset = Math.abs(pt4.x - pt6.x); 

double yOffset = Math.abs(pt2.y - pt6.y)/2.0; 

 

ImageViewer iview = Pics.view("Peanuts", Pics.altScreen()); 

BufferedImage scrImage = iview.getImage(); 

int pWidth = scrImage.getWidth(); 

int pHeight = scrImage.getHeight(); 

 

int rowNum = 0; 

double y = 0; 

while (y < pHeight) { 
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  double x = (rowNum%2 == 0)? 10 : 10+xOffset;   

      // calculate starting position for the new row 

  while (x < pWidth) { 

    if (Pics.isTransparent(scrImage, x, y+yOffset)) { 

               // check if this drawing spot is empty 

      boolean isDrawn =  

          randPeanut(peanuts, drawPts, x, y, scrImage); 

      if (isDrawn) 

        iview.repaint(); 

    } 

    x += 2*xOffset;  // jump two hexagons to the right 

  } 

  y += yOffset;  // move down to next row 

  rowNum++; 

} 

 

Pics.isTransparent() checks if the next drawing spot along the row is empty. If it is then 

randPeanut() randomly selects a peanut to be drawn. This function may return false if none of 

the peanuts can be rendered. 

randPeanut() generates a random sequence of indices made up of the integers from 0 to 5, and 

tries to draw each corresponding peanut until it succeeds, or the sequence is exhausted 

 

private static boolean randPeanut( 

                    Tile[] peanuts, String[] drawPts,   

                    double x, double y, BufferedImage scrImage) 

{ 

  int[] randIdxs = shuffleSeq(NUM_NUTS);  // e.g. {3,5,1,0,2,4} 

  for (int i=0; i < NUM_NUTS; i++) { 

    int idx = randIdxs[i]; 

    if ( peanuts[idx].testDrawAt(scrImage, drawPts[idx], x, y)) 

      return true; 

  } 

  return false; 

} 

 

A typical tiling generated by Peanuts.java is shown in Figure 74. 
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Figure 74. Tiled Peanuts. 

 

 

8. Extra Data (Part 2): Point Pairs and the ‘genTile’ Function. 

tileLocs() and tileSpacey() require two more pieces of information in addition to inner and 

outer points: point pairs, and a Java functional interface for creating a tile. 

A point pair is a shorthand way of specifying what sides of different tiles can be paired 

together. Sides pairing can be simplified to a point pair by assuming that a tile‟s coordinates 

are specified in counterclockwise order. 

The functional interface is part of the java.util.function package which allows a function to be 

passed to a method as an argument. This capability is employed in tileLocs() and tileSpacey() 

to pass them a genTile() function that creates a new tile. 

Point pairs and genTile() will be explained through several examples in the following 

subsections. 

 

8.1 Point Pairs 

jFAT supports two common cases for defining point pairs: when every tile side can be paired 

with every other one (e.g. when the tile is a regular polygon, such as a square), and pairing 

based on equal side lengths (e.g. when the tile is a rectangle).  

 

All Sides can be Paired 
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Carpet.java illustrates a situation when every tile side can be placed against another one – 

when the underlying shape is an equilateral triangle (see Figures 4,5, and Figure 75).  

 

Figure 75. The Carpet Tile. 

 

The relevant code snippet: 

 

double[] xs = {42, 105, 169};  

double[] ys = {38, 149, 38}; 

Shape s = ShapeOps.points(xs, ys); 

carpetTile = new Tile(s, "carpet");    

carpetTile.view(); 

  

PointPairs ptPairs = new PointPairs(carpetTile); 

ptPairs.print(); 

 

A reference to the tile is passed to the PointPairs constructor which returns a PointPairs 

object that will be later utilized by tileLocs() or tileSpacey() (see the next section). The call to 

PointPairs.print() produces: 

 

Point Pairs: 

 C0->C0; C0->C1; C0->C2; C1->C0; C1->C1; C1->C2; C2->C0; C2->C1; C2->C2; 

 

The nine pairs means that any two sides can be composed. 

A variant of this approach appears in DrawShapes.java which utilizes several regular 

polygons of the same side lengths. The square and equilateral triangle tiles are: 

 

Tile sq = new Tile("data/sqTile.txt");   

Tile  equ = new Tile("data/equTile.txt");   

 

Every side of the square and the triangle can be paired, which is specified by passing both tile 

references to the PointPairs constructor: 
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PointPairs ptPairs = new PointPairs( new Tile[]{sq, equ });   

ptPairs.print(); 

 

This call to PointPairs.print() generates a much longer list of pairings: 

 

Pair pts: [S0, S1, S2, S3, E0, E1, E2] 

Point Pairs: 

 S0->S0; S0->S1; S0->S2; S0->S3; S0->E0; S0->E1; S0->E2; S1->S0; S1->S1; 

 S1->S2; S1->S3; S1->E0; S1->E1; S1->E2; S2->S0; S2->S1; S2->S2; S2->S3; 

 S2->E0; S2->E1; S2->E2; S3->S0; S3->S1; S3->S2; S3->S3; S3->E0; S3->E1; 

 S3->E2; E0->S0; E0->S1; E0->S2; E0->S3; E0->E0; E0->E1; E0->E2; E1->S0; 

 E1->S1; E1->S2; E1->S3; E1->E0; E1->E1; E1->E2; E2->S0; E2->S1; E2->S2; 

 E2->S3; E2->E0; E2->E1; E2->E2; 

 

S0 through S3 are the points for the square, and E0 to E2 are for the triangle. 

 

Same Side Lengths can be Paired 

Another common matching is of all sides of the same length. For example, Traps.java 

employs the trapezoid in Figure 76. 

 

Figure 76. The Trapezoid Tile. 

 

The sides T0-T1, T2-T3, and T3-T0 have the same length, which is handled by calling the 

PointPairs.matchLen() static method: 

 

trap = new Tile("data/trapTile.txt"); 

      : 

 

PointPairs ptPairs = PointPairs.matchLens(trap); 

ptPairs.print(); 

 

The output from PointPairs.print() is: 
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Point Pairs based on side lengths: 

  Added: T0 -> [T0, T1, T3] 

  Added: T1 -> [T2] 

  Added: T2 -> [T0, T1, T3] 

  Added: T3 -> [T0, T1, T3] 

Point Pairs: 

 T0->T0; T0->T1; T0->T3; T1->T2; T2->T0; T2->T1;  

 T2->T3; T3->T0; T3->T1; T3->T3; 

 

The 'Added' lines list pairings by point, so the first line states that T0 can be paired with T0, 

T1, and T3. It can be hard to visualize what this means in terms of sides, and it sometimes 

helps to check the pairings by drawing the shape combinations, as illustrated in Figure 77. 

 

 

Figure 77. The pairings T0 -> [T0, T1, T3]. 

 

T0 is the first point of a side defined in a counterclockwise direction, and so represents T0-

T1. A sanity check is that the integer argument of the second point should be one greater (i.e. 

increasing from 0 to 1), modulo the number of points in the shape.  

The matching sides are in clockwise order, and so are T0-T3, T1-T0, and T3-T2 in this case. 

The sanity check here dictates that the side integer should decrease by 1 modulo the number 

of points. 

Isoceles.java is another example of side lengths matching; the tile is shown in Figure 78. 
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Figure 78. The Isosceles Tile. 

 

The relevant code: 

 

tri = new Tile("data/isoTile.txt"); 

  : 

PointPairs ptPairs = PointPairs.matchLens(tri); 

ptPairs.print(); 

 

The output from PointPairs.print() is: 

 

Point Pairs based on side lengths: 

  Added: I0 -> [I0, I1] 

  Added: I1 -> [I2] 

  Added: I2 -> [I0, I1] 

Point Pairs: 

 I0->I0; I0->I1; I1->I2; I2->I0; I2->I1; 

 

Defining Point Pairs by Hand 

More complex shapes generally require the programmer to define their own point pairs.  

The Penrose dart and kite become aperiodic by restricting which of their sides can be brought 

together. This is usually indicated by adding dots to the compatible points (as in Figure 79) or 

by drawing differently colored curves through their sides (as in Figure 39). 

 

Figure 79. The Penrose Dart and Kite. 

 

A point with a red dot can be paired with other dotted point, and undecorated points can also 

go together. 

The simplest way to set up these pairings is by multiple calls to PointPairs.add(), as in 

DrawPenrose.java: 
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PointPairs ptPairs = new PointPairs(); 

ptPairs.add("D0", "D0");  // dart pts 

ptPairs.add("D0", "K0"); 

ptPairs.add("D1", "K1"); 

ptPairs.add("D2", "K2"); 

ptPairs.add("D3", "K3"); 

ptPairs.add("D3", "D1"); 

 

ptPairs.add("K0", "D2");  // kite pts 

ptPairs.add("K0", "K2"); 

ptPairs.add("K1", "D3"); 

ptPairs.add("K1", "K1"); 

ptPairs.add("K2", "D0"); 

ptPairs.add("K2", "K0"); 

ptPairs.add("K3", "D1"); 

ptPairs.add("K3", "K3"); 

 

The first two calls to PointPairs.add() are shown visually in Figure 80. 

 

Figure 80. The pairings D0->D0 and D0->K0. 

 

The same checks can be utilized as in the trapezoid example. The side under consideration 

(D0-D1) is in increasing counterclockwise order, and its matching sides (D0-D3, K0-K3) are 

in decreasing clockwise order (modulo 4). 

As before, it really helps to check these pairs by drawing the darts and kites.  

 

DrawLizard.java utilizes what looks like a very complex shape (see Figures 9 to 11), but the 

corner points for the lizard mark out a regular hexagon (see Figure 81). 
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Figure 81. Lizard in a Hexagon. 

 

The lizard‟s point pairs only need to define how the six sides of the hexagon can be matched 

with the sides of other tiles. This is fairly straightforward because the complexity of the 

image means that each side only has a single match. The resulting code: 

 

PointPairs ptPairs = new PointPairs(); 

ptPairs.add("C0", "C2"); 

ptPairs.add("C1", "C1"); 

ptPairs.add("C2", "C4"); 

ptPairs.add("C3", "C3"); 

ptPairs.add("C4", "C0"); 

ptPairs.add("C5", "C5"); 

 

For instance, C0->C2 pairs the side C0-C1 with C2-C1 which corresponds to matching up the 

tail of the lizard between two tiles. 

 

DrawMaze.java employs six images as tiles (Figure 82) and uses them to build a maze. 

 

Figure 82. The Maze Tiles. 
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The following code creates the tiles: 

 

Point2D.Double[] pts = {  // four points; defined ccw 

   new Point2D.Double(0,0), new Point2D.Double(0,60), 

   new Point2D.Double(60,60), new Point2D.Double(60,0)  }; 

 

// note: each tile uses a unique label 

noneTile = new Tile("data/none.png"); 

noneTile.addPts("N", pts); 

 

roundTile = new Tile("data/round.png"); 

roundTile.addPts("R", pts); 

 

turnTile = new Tile("data/turn.png"); 

turnTile.addPts("T", pts); 

 

pathTile = new Tile("data/path.png"); 

pathTile.addPts("P", pts); 

 

branchTile = new Tile("data/branch.png"); 

branchTile.addPts("B", pts); 

 

crossTile = new Tile("data/cross.png"); 

crossTile.addPts("C", pts); 

 

A typical maze is shown in Figure 83. 

 

Figure 83. A Mazing Output. 
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Each tile is a square so the tiling complexity arises from specifying which sides can be 

paired. There are only two cases: when a side includes a line and when it's blank; any 'line' 

side can be paired with any other, and any blank side can be paired with any blank. This is 

implemented by pairing four arrays of point names: 

 

/* Each side either has a maze line or is blank. 

   "zero" means that no line enters/leaves a side;  

   "one" means there is a line entering/leaving a side 

*/ 

// ccw 'from' pts 

String[] zeroPts = {   // no line leaving the side 

   "N0", "N1", "N2", "N3",  "R0", "R1", "R2", 

   "T0", "T1",  "P0", "P2", "B0" }; 

 

String[] onePts = {  // line leaving the side 

   "R3",  "T2", "T3",  "P1", "P3",  

   "B1", "B2", "B3",  "C0", "C1", "C2", "C3" }; 

 

// clockwise to pts 

String[] toZeros = {   // no line entering the side 

   "N0", "N1", "N2", "N3",   

   "R1", "R2", "R3",  "T1", "T2", 

   "P1", "P3",  "B1" }; 

 

String[] toOnes = {  // line entering the side 

   "R0", "T0", "T3",  "P0", "P2", 

   "B0", "B2", "B3",   

   "C0", "C1", "C2", "C3" }; 

 

// create "no line" and line pairs 

PointPairs ptPairs = new PointPairs(); 

ptPairs.add(zeroPts, toZeros);  // no line 

ptPairs.add(onePts, toOnes);    // line 

 

Note that the zeroPts[] and toZeros[] and the onePts[] and toOnes[] are similar, but not the 

same. 

 

8.2. The 'genTile() Function Interface 

genTile() defines how tileLocs() and tileSpacey() can create a new tile when they need one. 

It‟s coded using java.util.function so that it can be passed as an argument to those tiling 

functions. The function must have one input argument, which tileLocs() and tileSpacey() 

assume to be a point label, and returns a Tile result. 

In the cases when the tiling only involves one tile type, there's no need to use the label 

argument, and the code becomes very short. This allows us to define the function as a lambda 

expression. For example, in Pentagons.java: 



71 
 

 

Function<String, Tile> genTile = (String nm)->{ return penta.clone(); }; 

 

The genTile variable is passed to tileLocs() or tileSpacey() which uses it to generate a new 

pentagon tile using Tile.clone(), and the label isn't used. One drawback of this approach is 

that the penta tile must be declared globally so that genTile() will be able to reference it at 

runtime. For more examples like this one, see Carpet.java , Isoceles.java, and Triangles.java. 

A slightly more complicated genTile() usage can be found in Traps.java, when the trapezoid 

tile is cloned and given a random color: 

 

Function<String, Tile> genTile =  

          (String nm)->{ return trap.colorChg( 

                                colors[rand.nextInt(colors.length)]); }; 

 

Since Traps.java also only utilizes a single tile type, there's still no need to use the string 

input. However, the trap tile, the rand random number object, and the colors[] array must all 

be global so that genTile() can reference them during its execution. 

DrawMaze.java employs six tiles (see Figure 82), so its genTile() does use the string 

argument. tileLocs() or tileSpacey() will pass it a point name (e.g. "N1", "P2", "C0"), and 

genTile() uses this argument to decide which type of tile to create. Of course, for this 

approach to work, the programmer should ensure that the different tiles use different point 

labels. The code extracts the first character of the string and uses it to switch to the correct 

call to Tile.clone(): 

 

private static Tile genTile(String ptName) 

// point names begin with 'N', 'R', 'T', 'P', 'B', or 'C' 

{ 

  char ch = ptName.charAt(0); 

  switch(ch) { 

    case 'N': return noneTile.clone(); 

    case 'R': return roundTile.clone(); 

    case 'T': return turnTile.clone(); 

    case 'P': return pathTile.clone(); 

    case 'B': return branchTile.clone(); 

    case 'C': return crossTile.clone(); 

 

    default: System.out.println("Unknown point name: " + ptName); 

  } 

  return null; 

}  // end of genTile() 

 

Since this function is a few lines long, I wrote it as a real function rather than as a lambda 

expression, which means that tileLocs() or tileSpacey() must refer to it as 
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DrawMaze::genTile. More examples of this kind can be found in DrawPenrose.java and 

DrawShapes.java 

 

9. Built-in Tiling 

After several sections of buildup, we can finally describe tileLocs() and tileSpacey().  

Both functions work upon a list of 'placed' tiles (i.e. those tiles already drawn on the image), 

looping through them either until the list is empty or a maximum number of tiles have been 

drawn. A tile is removed from the list and each one of its points is examined in order to draw 

tiles adjacent to its sides. 

tileLocs() utilizes a backtracking algorithm to try to find a set of tiles that completely 

surround the current point, and so ensure there are no spaces left in the tiling. However, if the 

search fails, tileLocs() does not backtrack to earlier points or tiles. This has the advantage of 

increasing its tiling speed, but at the expense of poor tiling coverage in some cases (as we'll 

see below). 

tileSpacey() also considers every point of a tile but only tries to draw a single new tile 

adjacent to the point's side. If there's no suitable choice then the side is left unused, and the 

algorithm moves on to the next point in the tile. This make tileSpacey() even faster than 

tileLocs(), but the function's main reason for existing is to handle tilings that deliberately 

include spaces (we'll see some examples below).  

I've decided not to describe tileLocs() and tileSpacey() in any greater detail than this, but both 

functions can be found in Search.java in the jFAT JAR file, and are generously documented.  

 

9.1. Using tileLocs() 

The jFAT download contains many examples that use tileLocs(), including: Arrows.java, 

Carpet.java, DrawArrows.java, DrawCurves.java, DrawLizards.java, DrawMaze.java, 

DrawPenrose.java, DrawQuarters.java, DrawShapes.java, DrawTris.java, ImPentagons.java, 

Isoceles.java, Pentagons.java, Traps.java, and Triangles.java.  

Traps.java was first described in section 8 (see Figure 76), where the focus was on its point 

pairs. The code below is its entire main() function, but only the last two lines are new: 

 

private static Tile trap; // global so can be used in genTile() 

 

 

public static void main(String args[]) 

{ 

  trap = new Tile("data/trapTile.txt"); 

  Graphics2D g2d = trap.getGraphics(); 

  // red circle 
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  g2d.setColor(Color.RED); 

  g2d.fillOval(70, 25, 10, 10); 

  trap.view(); 

  trap.reportPoints(); 

 

  PointPairs ptPairs = PointPairs.matchLens(trap); 

 

  Function<String, Tile> genTile =  

     (String nm)->{ return trap.colorChg( 

                       colors[rand.nextInt(colors.length)]); }; 

 

  // draw tiles on the screen 

  ImageViewer iview = Pics.view("Draw Trapezoids", Pics.altScreen()); 

  Search.tileLocs(trap, ptPairs, iview, genTile); 

  Pics.save(iview.getImage(), "SavedPics/trapezoids.png"); 

} // end of main() 

 

tileLocs() is passed a starting tile (trap), the point pairs, a reference to the ImageViewer, and 

the genTile() function. 

Part of the output is shown in Figure 84. 

 

 

Figure 84. Trapezoids Output. 

 

When tileLocs() (and tileSpacey()) can choose between several point pairs for matching a 

tile, they make a random selection. In the case of the trapezoid, this means that any of the T0 

pairings in Figure 77 might be employed. The random coloring carried out by genTile() also 

causes additional variations between runs of the program. 
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When tileLocs() finishes, it prints a percentage for the amount of uncovered space in the 

image, which for this example is just 0.12%. 

 

DrawLizards.java was first described back in section 1.3 (see Figures 9 to 11). The code 

below is its entire main(): 

 

private static Tile lizard;   

 

public static void main(String args[]) 

{ 

  lizard = new Tile("data/liz.png"); 

  lizard.addPt("C0", 113, 43);   

  lizard.addPt("C1", 57, 80);  

  lizard.addPt("C2", 61, 147); 

  lizard.addPt("C3", 126, 186); 

  lizard.addPt("C4", 193, 148); 

  lizard.addPt("C5", 184, 73); 

 

  double[] xs = new double[] { 

       57,  86,  91,  82,  70, 103,  85,  94, 

      112, 116, 138, 149, 172, 182, 197, 179, 

      154, 156, 126, 126, 141, 111 }; 

  double[] ys = new double[] { 

       66,  58,  88, 112, 132, 155, 137, 197, 

      181, 123, 123, 158, 151, 115, 103,  84, 

       89, 105,  86,  49,  29, 103 }; 

  lizard.addInners(xs, ys);  

 

  // outers are automatically generated 

 

  PointPairs ptPairs = new PointPairs(); 

  ptPairs.add("C0", "C2");  

  ptPairs.add("C1", "C1"); 

  ptPairs.add("C2", "C4"); 

  ptPairs.add("C3", "C3"); 

  ptPairs.add("C4", "C0"); 

  ptPairs.add("C5", "C5"); 

  ptPairs.print(); 

     

  Function<String, Tile> genTile =  

      (String nm)->{return lizard.colorChg(Color.WHITE,  

                      colors[rand.nextInt(colors.length)]); }; 

 

  ImageViewer iview = Pics.view("Lizards", Pics.altScreen()); 

  Search.tileLocs(lizard, ptPairs, iview, genTile); 

  Pics.save(iview.getImage(), "SavedPics/lizards.png"); 

} // end of main() 
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The call to tileLocs() is virtually identical to the one in Traps.java, although the starting tile is 

a lizard of course. 

Part of the output is shown in Figure 85, and tileLocs() reports an unfilled space percentage 

of 0.54%, which can be observed by looking closely at the top left of the screenshot. 

 

 

Figure 85. Lizards Output. 

 

One common way of improving tile coverage is to replace the automatically generated inner 

and outer points for a tile. This process can be seen in action in DrawLizards.java if the call 

to Tile.addInners() is commented out, switching the program back to using the default inner 

points. Figure 86 shows the worsening in the tile coverage. 
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Figure 86. Lizards Output with Default Inner Points. 

 

The reason for this drop off in coverage can be seen by looking at the Tile.view() images for 

the lizard in both cases (e.g. in Figures 66 and 64). In the latter (worse) case, the inner points 

(drawn as green dots) are very close to the edge of the lizard and don't include its arms, legs, 

and tail.  

Another problem with the lizard image is that is doesn't quite match the hexagon defined by 

its points (see Figure 81). This is easiest to see by looking at the output from 

Tile.reportPoints(): 

 

Points for tile liz: 

  C0 (113.00, 43.00); 123.64 degs; 67.12 pixels 

  C1 (57.00, 80.00); 120.04 degs; 67.12 pixels 

  C2 (61.00, 147.00); 124.38 degs; 75.80 pixels 

  C3 (126.00, 186.00); 119.48 degs; 77.03 pixels 

  C4 (193.00, 148.00); 112.72 degs; 75.54 pixels 

  C5 (184.00, 73.00); 119.75 degs; 77.08 pixels 

Image size: (223, 236) 

No. Inners: 9; No. Outers: 6 

 

Each interior angle should be 120 degrees and the side lengths should be the same. This 

indicates that the image should be redrawn, and the points more accurately positioned. 

A similar problem is behind the poor tiling generated by Triangles.java. It uses an image of a 

equilateral triangle containing an 'f' (trif.png), and its Tile.reportPoints() output is:  

 

Points for tile trif: 

  A (51.00, 6.00); 60.33 degs; 92.78 pixels 

  B (4.00, 86.00); 59.57 degs; 93.00 pixels 

  C (97.00, 86.00); 60.10 degs; 92.28 pixels 

Image size: (100, 100) 

No. Inners: 9; No. Outers: 3 

 

The interior angles should all be 60 degrees, and the side lengths should be the same. 

As a third disappointing example, consider the output from Isoceles.java in Figure 87. 
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Figure 87. Isosceles Output. 

 

The problem here is a more fundamental one, caused by the tileLocs() algorithm. The point 

pairs definition for the tile encourages the development of two different large-scale patterns – 

layers of parallelograms, and wheels of triangles radiating from a central point. When these 

patterns meet each other, one will block the other, and tileLocs() will be unable to completely 

surround a point with tiles. When a point cannot be completely covered with tiles, tileLocs() 

gives up and moves onto the next point in the tile. A better solution would be to have the 

tiling function backtrack over its earlier drawing choices and try different tile pairings (see 

section 9.3. for more discussion of this). 

   

9.2. Using tileSpacey() 

The jFAT download contains many examples using tileSpacey(), including: 

DrawCurves.java, DrawPenrose.java, DrawQuarters.java, DrawShapes.java, 

ImPentagons.java, Isoceles.java, and Pentagons.java.   

When a programmer is trying to decide whether to use tileLocs() or tileSpacey(),  

tileSpacey() is a better choice if the tiling is meant to include gaps. For example, 

DrawQuarters.java uses an irregular shape [6] shown in Figure 88. 

 



78 
 

Figure 88. The Quarter Tile. 

 

When this is tiled over the screen, roughly one quarter of each tile is transparent, leaving a lot 

of intended space (see Figure 89). 

 

 

Figure 89. Quarters Output using tileSpacey(). 

 

Incidentally, there are some incorrectly placed tiles in Figure 89, along the top row on the 

right hand side. This indicates that the placement of the inner points could be improved. 

The main() function for DrawQuarters.java: 

 

private static Tile quart; 

 

public static void main(String args[]) 

{ 

  quart = new Tile("data/quarter.png"); 

  quart.addPt("A0", 19, 18); 

  quart.addPt("A1", 19, 100);  

  quart.addPt("A2", 101, 100);   

  quart.addPt("A3", 101, 18);  

 

  PointPairs ptPairs = new PointPairs(quart); 

 

  Function<String, Tile> genTile =  

                    (String nm)->{return quart.clone();}; 

 

  // draw tiles on the screen 

  ImageViewer iview = Pics.view("Draw Quarters", Pics.altScreen()); 
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  Search.tileSpacey(quart, ptPairs, iview, genTile); 

  Pics.save(iview.getImage(), "SavedPics/quarters.png"); 

} // end of main() 

 

The arguments passed to tileSpacey() are exactly the same as for tileLocs(). 

If the call to tileSpacey() is replaced by tileLocs(), then the result is worse (see Figure 90), 

and takes considerably longer to be generated due to excessive backtracking between tile 

choices. The main reason for that is because the tile's A3 point is not over an image pixel. 

 

 

Figure 90. Quarters Output using tileLocs(). 

 

Another example of the superiority of tileSpacey() over tileLocs() can be seen in 

ImPentagons.java which tiles the screen with regular pentagons like the one in Figure 91. 

 

Figure 91. The Pentagon Tile. 

 

Tiling with regular pentagon will leave gaps, but tileSpacey() doesn't mind, as shown in 

Figure 92. 
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Figure 92. Pentagon Output using tileSpacey(). 

 

Figure 92 also highlights inaccuracies in the placement of the P0 to P4 points on the image 

which introduces some unintentional gaps between the tiles. 

If the call to tileSpacey() is replaced with tileLocs(), all of these spaces defeat the algorithm 

and only the first tile is drawn (see Figure 93). 

 

Figure 93.  Lonely Pentagon Output using tileLocs(). 

 

 

9.3. Improving the Tiling Algorithm 

Before I talk a little about how to make jFAT's tiling algorithms better, Figure 94 shows the 

tiling generated by DrawPenrose.java when it utilizes tileLocs(). 
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Figure 94. Penrose Tiling Output. 

 

Figure 94 is a good example of why jFAT stands for "Fairly Accurate Tiling". The large-

scale patterns formed by the kite and the dart, such as the star and the sun (see Figures 39 and 

40), are present, but so are quite a lot of spaces. 

Although tileLocs() utilizes a limited form of backtracking when trying to surround a point 

with tiles, backtracking is not employed at a higher level. If it's not possible for a point to be 

surrounded by tiles then tileLocs() moves onto the next available point or tile. What it should 

really do is backtrack through its list of already drawn tiles, undoing those drawings in order 

to try alternative tile matches. 

The drawback with "full" backtracking is the computational expense. There may be many 

tiles between the one that reached a dead end (i.e. a point that could not be fully tiled) and the 

earlier tile that caused this problem. For example, that tile could stick out too far or be 

positioned incorrectly. Backtracking to that badly behaved tile will most likely have to undo 

(and redo) the work of many perfectly fine intermediate tiles.  

A glimpse of what I'm talking about is possible by uncommenting a debugging line of code in 

tileLocs() which prints a drawing number in the center of each tile. When DrawPenrose.java 

is executed with this version of tileLocs(), it produces Figure 95. 
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Figure 95. Penrose Tiling Output with Debugging Turned On. 

 

The numbers on the tiles give a rough indication of the order in which they were drawn. The 

parallelogram-sized gap just to the right of the center of the image is surrounded by tiles 

numbered 15, 16, 32, 33, 55, and 56. In order to 'fix' that gap, the algorithm must backtrack 

from tile 56 to tile 33, or perhaps even to tile 16, an interval of at least twenty 'correct' tiles. 

"Full" backtracking may theoretically solve this problem, but is too complex and slow to be a 

feasible solution. Instead, some form of "intelligent" backtracking is needed which could 

allow intermediate tile drawings to be unwound as a single operation (e.g. undo the work of 

tile 56 back to tile 33 in one step). Alternatively, tile 33 could be moved up the ordering of 

drawn tiles so it precedes tile 56.  

Unfortunately, these approaches require spatial knowledge of the tiling (i.e. that tile 56 is 

„next to‟ tile 33, or „near to‟ tile 32), and some way to identify an 'incorrectly positioned' tile. 
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